资源类型

期刊论文 91

年份

2024 1

2023 14

2022 9

2021 14

2020 5

2019 3

2018 4

2017 5

2016 1

2015 4

2014 3

2013 2

2012 1

2011 5

2010 3

2009 3

2008 1

2007 6

2006 1

2002 2

展开 ︾

关键词

柔性机器人 2

生物材料 2

颠覆性技术 2

9 + 2结构 1

CFD 1

FHW 1

临界深度 1

人工纤毛 1

仿生合成 1

仿生智能技术 1

仿生系统 1

低雷诺数 1

允许深度 1

先进冷却 1

光纤测试 1

光遗传学 1

决策支持 1

刮板输送机 1

功能仿生 1

展开 ︾

检索范围:

排序: 展示方式:

A novel shape memory alloy actuated soft gripper imitated hand behavior

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0700-8

摘要: The limited length shrinkage of shape memory alloy (SMA) wire seriously limits the motion range of SMA-based gripper. In this paper, a new soft finger without silicone gel was designed based on pre bent SMA wire, and the finger was back to its original shape by heating SMA wire, rather than relying only on heat exchange with the environment. Through imitating palm movement, a structure with adjustable spacing between fingers was made using SMA spring and rigid spring. The hook structure design at the fingertip can form self-locking to further improve the load capacity of gripper. Through the long thin rod model, the relationship of the initial pre bent angle on the bending angle and output force of the finger was analyzed. The stress-strain model of SMA spring was established for the selection of rigid spring. Three grasping modes were proposed to adapt to the weight of the objects. Through the test of the gripper, it was proved that the gripper had large bending amplitude, bending force, and response rate. The design provides a new idea for the lightweight design and convenient design of soft gripper based on SMA.

关键词: shape memory alloy (SMA)     pre bent     wire     gripper     grasping mode     lightweight    

Design and analysis of the gripper mechanism based on generalized parallel mechanisms with configurable

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 765-781 doi: 10.1007/s11465-021-0655-1

摘要: Generalized parallel mechanisms with a configurable moving platform have become popular in the research field of parallel mechanism. This type of gripper mechanism can be applied to grasp large or heavy objects in different environments that are dangerous and complex for humans. This study proposes a family of novel (5 + 1) degrees of freedom (three translations and two rotations plus an additional grasping motion) gripper mechanisms based on the generalized parallel mechanisms with a configurable moving platform. First, the configurable moving platform, which is a closed loop, is designed for grasping manipulation. The hybrid topological arrangement is determined to improve the stiffness of the manipulator and realize high load-to-weight ratios. A sufficient rule based on Lie group theory is proposed to synthesize the mechanism. The hybrid limb structure is also enumerated. A family of novel gripper mechanisms can be assembled through the hybrid limbs by satisfying the rule. Two examples of the gripper mechanisms with and without parallelogram pairs are shown in this study. A kinematic analysis of the example mechanism is presented. The workspace shows that the mechanism possesses high rotational capability. In addition, a stiffness analysis is performed.

关键词: generalized parallel mechanism     configurable moving platform     gripper mechanism     type synthesis     kinematic analysis    

Design, analysis, and neural control of a bionic parallel mechanism

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 468-486 doi: 10.1007/s11465-021-0640-8

摘要: Although the torso plays an important role in the movement coordination and versatile locomotion of mammals, the structural design and neuromechanical control of a bionic torso have not been fully addressed. In this paper, a parallel mechanism is designed as a bionic torso to improve the agility, coordination, and diversity of robot locomotion. The mechanism consists of 6-degree of freedom actuated parallel joints and can perfectly simulate the bending and stretching of an animal’s torso during walking and running. The overall spatial motion performance of the parallel mechanism is improved by optimizing the structural parameters. Based on this structure, the rhythmic motion of the parallel mechanism is obtained by supporting state analysis. The neural control of the parallel mechanism is realized by constructing a neuromechanical network, which merges the rhythmic signals of the legs and generates the locomotion of the bionic parallel mechanism for different motion patterns. Experimental results show that the complete integrated system can be controlled in real time to achieve proper limb–torso coordination. This coordination enables several different motions with effectiveness and good performance.

关键词: neural control     behavior network     rhythm     motion pattern    

Cutting performance of surgical electrodes by constructing bionic microstriped structures

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0728-9

摘要: Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue. However, tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance. A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing, followed by silanization treatment, to enhance lyophobicity. The effect of initial, simple grid-textured, and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes. Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode. The formation mechanism of adhered tissue was discussed in terms of morphological features, and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed. Furthermore, we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode. This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.

关键词: surgical electrodes     tissue adhesion     thermal injury     bionic structures     cutting performance     medical tools    

IPMC gripper static analysis based on finite element analysis

Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 204-211 doi: 10.1007/s11465-010-0005-1

摘要: Recently, a type of flexible grippers with low power supply (0–5 V) has been designed and developed for grasping small but precision parts. In previous work, the authors manufactured a soft gripper whose actuating components are made of ionic polymer-metal composite (IPMC) materials; however, there is not a comprehensive model to analyze the complete mechanics for this IPMC gripper. Therefore, this paper provides a finite element method for analyzing its static mechanics characteristics in the state with maximal stress and strain (i.e., the gripper opening largest, including the IPMC deformation, stress, and strain). Further, these electromechanical coupling relationships can be simulated by using the piezoelectric analysis module based on ANSYS software. The simulation results show that the maximal tip displacement of IPMC strips can nearly reach their own free length, the maximal stress is 54 MPa in the center of copper electrodes, and the maximal strain is 0.0286 on the IPMC strip. The results provide detailed numerical solutions and appropriate finite element analysis methodologies beneficial for further research on the optimization design, forecast analysis, and control field.

关键词: ionic polymer-metal composite (IPMC)     artificial muscles     actuator     flexible gripper     finite element analysis     electromechanical coupling    

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

Development of soft kernel durum wheat

Craig F. MORRIS

《农业科学与工程前沿(英文)》 2019年 第6卷 第3期   页码 273-278 doi: 10.15302/J-FASE-2019259

摘要:

Kernel texture (grain hardness) is a fundamental and determining factor related to wheat ( spp.) milling, baking and flour utilization. There are three kernel texture classes in wheat: soft and hard hexaploid ( ), and very hard durum ( subsp. ). The genetic basis for these three classes lies with the Puroindoline genes. Phenotypically, the easiest means of quantifying kernel texture is with the Single Kernel Characterization System (SKCS), although other means are valid and can provide fundamental material properties. Typical SKCS values for soft wheat would be around 25 and for durum wheat≥80. Soft kernel durum wheat was created via homeologous recombination using the mutation, which facilitated the transfer of ca. 28 Mbp of 5DS that replaced ca. 21 Mbp of 5BS. The 5DS translocation contained a complete and intact locus and both puroindoline genes. Expression of the puroindoline genes in durum grain resulted in kernel texture and flour milling characteristics nearly identical to that of soft wheat, with high yields of break and straight-grade flours, which had small particle size and low starch damage. Dough water absorption was markedly reduced compared to durum flour and semolina. Dough was essentially unchanged and reflected the inherent gluten properties of the durum background. Pasta quality was essentially equal-to-or-better than pasta made from semolina. Agronomically, soft durum germplasm showed good potential with moderate grain yield and resistance to a number of fungal pathogens and insects. Future breeding efforts will no doubt further improve the quality and competitiveness of soft durum cultivars.

关键词: soft durum wheat     grain hardness     puroindolines     milling     baking     pasta     noodles    

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration

Jun WU,Xuemei LIU

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 323-340 doi: 10.1007/s11709-015-0301-2

摘要: This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

关键词: high strength concrete (SHS)     engineered cementitious composite     interface     blast test     strain rate effect    

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0678-2

摘要: Owing to their inherent great flexibility, good compliance, excellent adaptability, and safe interactivity, soft robots have shown great application potential. The advantages of light weight, high efficiency, non-polluting characteristic, and environmental adaptability provide pneumatic soft robots an important position in the field of soft robots. In this paper, a soft robot with 10 soft modules, comprising three uniformly distributed endoskeleton pneumatic artificial muscles, was developed. The robot can achieve flexible motion in 3D space. A novel kinematic modeling method for variable-curvature soft robots based on the minimum energy method was investigated, which can accurately and efficiently analyze forward and inverse kinematics. Experiments show that the robot can be controlled to move to the desired position based on the proposed model. The prototype and modeling method can provide a new perspective for soft robot design, modeling, and control.

关键词: pneumatic artificial muscles     soft robot     modeling approach     principle of virtual work     external load    

仿生农用杀菌剂银泰的研制与应用

孟昭礼,方向阳,罗兰,尚坚

《中国工程科学》 2007年 第9卷 第3期   页码 28-34

摘要:

银泰(1-对羟基苯基丁酮)是以银杏外种皮提纯物白果酚为先导化合物仿生合成的一种杀菌剂。其中,银杏果实乙醇粗提物8.3倍和25倍液对苹果腐烂病抑菌率达100%和50%;银杏果实外种皮提纯物白果酚200倍和400倍液对苹果腐烂病病菌抑菌率均为100%。20%银泰微乳剂对苹果腐烂病、番茄灰霉病等4种病菌 EC50 为17.26~48.43mg/L,分别优于对照药剂;田间防治小麦纹枯病等4种病害效果达85%以上;对非靶标生物安全,且不易产生抗药性。仿生合成的银泰原药对大白鼠毒性试验,经口、经皮 LD50 均为4640mg/kg,20%银泰乳油对大白鼠毒性试验,经口LD50为3160mg/kg,经皮 LD50 为2150mg/kg;亚慢性经口毒性(90d)试验雌为19.1mg/kg,雄为18.3mg/kg;Ames、细胞微核和染色体畸变试验均为阴性结果。

关键词: 银杏     白果酚     仿生合成     银泰     防治效果    

Analysis of load and adaptability of disc cutters during shield tunneling in soft–hard varied strata

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 533-545 doi: 10.1007/s11709-023-0946-1

摘要: The disc cutters of shield machines exhibit unsatisfactory adaptability and performance during the soft–hard varied strata tunneling process. To analyze the rotation state, cutting performance, and adaptability of disc cutters during shield tunneling in soft–hard varied strata, the Holmquist Johnson Cook and Federal Highway Administration constitutive models are introduced to numerically simulate the failure process of materials on the excavation face and to calculate the load of disc cutters. Additionally, the parameters of the models are modified based on laboratory disc cutter excavation test results. The results of numerical calculation can reflect the load level and the behavior of the disc cutters during operation. The tangential loads of the disc cutters during the cutting of four typical soft-strata excavation face models are numerically calculated, thus providing reference values for the starting torque of the disc cutters. A greater penetration is suggested for soft-strata tunneling to allow the disc cutters to rotate smoothly and continuously as well as to guarantee a better cutting effect. The disc cutters in the center of the cutterhead should be specified with a lower starting torque to prevent uneven wear, rotation stagnation, cutterhead clogging, and other adverse phenomena.

关键词: shield tunneling     disc cutter load     laboratory excavation test     numerical calculation     soft–hard varied strata    

Risk stratification system for skin and soft tissue infections after allogeneic hematopoietic stem cell

《医学前沿(英文)》 2022年 第16卷 第6期   页码 957-968 doi: 10.1007/s11684-021-0910-1

摘要: Skin and soft tissue infections (SSTIs) refer to infections involving the skin, subcutaneous tissue, fascia, and muscle. In transplant populations with hematological malignancies, an immunocompromised status and the routine use of immunosuppressants increase the risk of SSTIs greatly. However, to date, the profiles and clinical outcomes of SSTIs in hematopoietic stem cell transplantation (HSCT) patients remain unclear. This study included 228 patients (3.67%) who developed SSTIs within 180 days after allogeneic HSCT from January 2004 to December 2019 in Peking University People’s Hospital. The overall annual survival rate was 71.5%. We compared the differences between survivors and non-survivors a year after transplant and found that primary platelet graft failure (PPGF), comorbidities of acute kidney injury (AKI), and hospital-acquired pneumonia (HAP) were independent risk factors for death in the study population. A PPGF–AKI–HAP risk stratification system was established with a mortality risk score of 1×PPGF+1×AKI+1×HAP. The areas under the curves of internal and external validation were 0.833 (95% CI 0.760–0.906) and 0.826 (95% CI 0.715–0.937), respectively. The calibration plot revealed the high consistency of the estimated risks, and decision curve analysis showed considerable net benefits for patients.

关键词: skin and soft tissue infections     hematopoietic stem cell transplantation     risk stratification system     mortality    

Design and experiment of a novel pneumatic soft arm based on a deployable origami exoskeleton

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0770-2

摘要: Soft arms have shown great application potential because of their flexibility and compliance in unstructured environments. However, soft arms made from soft materials exhibit limited cargo-loading capacity, which restricts their ability to manipulate objects. In this research, a novel soft arm was developed by coupling a rigid origami exoskeleton with soft airbags. The joint module of the soft arm was composed of a deployable origami exoskeleton and three soft airbags. The motion and load performance of the soft arm of the eight-joint module was tested. The developed soft arm withstood at least 5 kg of load during extension, contraction, and bending motions; exhibited bistable characteristics in both fully contracted and fully extended states; and achieved a bending angle of more than 240° and a contraction ratio of more than 300%. In addition, the high extension, contraction, bending, and torsional stiffnesses of the soft arm were experimentally demonstrated. A kinematic-based trajectory planning of the soft arm was performed to evaluate its error in repetitive motion. This work will provide new design ideas and methods for flexible manipulation applications of soft arms.

关键词: pneumatic soft arm     soft airbag     deployable origami exoskeleton     bistable characteristics     cargo-loading capacity    

Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1372-1389 doi: 10.1007/s11709-021-0772-2

摘要: Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses (SHCLRM) containing double fissures under uniaxial compression. The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed. The characteristics of the acoustic emission source location distribution, and frequency changes of the crack evolution process were also investigated. The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures. Hard layers predominantly produce tensile cracks; soft layers produce shear cracks. The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers. The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics, and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability. This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines, as well as in roadway layout and support.

关键词: soft−hard composite layered rock mass     double cracks     crack evolution     acoustic emission     digital image correlation    

Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers

ZHANG Ruihua, CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 433-438 doi: 10.1007/s11465-007-0074-y

摘要: This paper develops a 30 mm × 30 mm × 50 mm spherical micro actuator driven by piezoelectric ceramic stacks (PZT), and analyzes its dynamic performances. First, the space coordinate relationship of the spherical micro actuator and a dynamic model are set up. Second, The Runge-Kutta arithmetic is used to calculate the dynamical parameters of the micro actuator; the SIMULINK module of MATLAB is used to build the dynamical simulating model and then simulate it. Third, an experimental sample of the spherical micro actuator is developed, a micromanipulator is integrated with a micro-gripper based on the sample spherical micro actuator, and the experimental research on the micro assembly is conducted between a micro shaft of 180 μm and a micro spindle sleeve of 200 μm. Finally, the characteristics of the spherical micro actuator influenced by the mass of the metal sphere of the micro actuator, driving signal frequency, friction coefficient of the contact surface between the metal sphere and the friction block of the micro driving unit are analyzed. The experimental results indicate that the rotation resolution of the micro actuator reaches 0.000 1°, the rotation positioning precision reaches 0.000 5°, and the maximum working frequency is about 1200 Hz. The experimental results validate the back rotation vibration model of the spherical micro actuator. The micromanipulator integrated by the spherical micro actuator can meet the requirements of precise micro operation and assembly for micro electro mechanical systems (MEMS) or other microelements in micro degree fields.

关键词: spherical     micro-gripper     friction coefficient     dynamic     frequency    

标题 作者 时间 类型 操作

A novel shape memory alloy actuated soft gripper imitated hand behavior

期刊论文

Design and analysis of the gripper mechanism based on generalized parallel mechanisms with configurable

期刊论文

Design, analysis, and neural control of a bionic parallel mechanism

期刊论文

Cutting performance of surgical electrodes by constructing bionic microstriped structures

期刊论文

IPMC gripper static analysis based on finite element analysis

Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO,

期刊论文

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

期刊论文

Development of soft kernel durum wheat

Craig F. MORRIS

期刊论文

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration

Jun WU,Xuemei LIU

期刊论文

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

期刊论文

仿生农用杀菌剂银泰的研制与应用

孟昭礼,方向阳,罗兰,尚坚

期刊论文

Analysis of load and adaptability of disc cutters during shield tunneling in soft–hard varied strata

期刊论文

Risk stratification system for skin and soft tissue infections after allogeneic hematopoietic stem cell

期刊论文

Design and experiment of a novel pneumatic soft arm based on a deployable origami exoskeleton

期刊论文

Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression

期刊论文

Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers

ZHANG Ruihua, CHEN Haichu

期刊论文